-Bibliografia a corredo dell’articolo-
Acaricidi: effetti avversi sulle api, interazioni, residualità, resistenza della varroa.
apparso nel Dossier Varroa 2014 allegato al numero 4/2014 de L’Apis
1. Collins, A. M., Pettis, J. S., Wilbanks, R. & Feldlaufer, M. F. Performance of honey bee (Apis mellifera) queens reared in beeswax cells impregnated with coumaphos. J. Apic. Res.43, 128–134 (2014).
2. Wu, J. Y., Smart, M. D., Anelli, C. M. & Sheppard, W. S. Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J. Invertebr. Pathol.109, 326–329 (2012).
3. Wu, J. Y., Anelli, C. M. & Sheppard, W. S. Sub-Lethal Effects of Pesticide Residues in Brood Comb on Worker Honey Bee (Apis mellifera) Development and Longevity. PLoS ONE6, e14720 (2011).
4. Pettis, J. S. A scientific note on Varroa destructor resistance to coumaphos in the United States. Apidologie35, 91–92 (2004).
5. Maggi, M., Ruffinengo, S., Damiani, N., Sardella, N. & Eguaras, M. First detection of Varroa destructor resistance to coumaphos in Argentina. Exp. Appl. Acarol.47, 317–320 (2009).
6. Spreafico, M., Eördegh, F. R., Bernardinelli, I. & Colombo, M. First detection of strains of Varroa destructor resistant to coumaphos. Results of laboratory tests and field trials. Apidologie32, 49–55 (2001).
7. Elzen, P. J. & Westervelt, D. Detection of coumaphos resistance in Varroa destructor in Florida. Am. Bee J.142, 291–292 (2002).
8. Li, A. Y., Pruett, J. H., Davey, R. B. & George, J. E. Toxicological and biochemical characterization of coumaphos resistance in the San Roman strain of Boophilus microplus (Acari: Ixodidae). Pestic. Biochem. Physiol.81, 145–153 (2005).
9. Johnson, R. M., Pollock, H. S. & Berenbaum, M. R. Synergistic interactions between in-hive miticides in Apis mellifera. J. Econ. Entomol.102, 474–479 (2009).
10. Berry, J. A., Hood, W. M., Pietravalle, S. & Delaplane, K. S. Field-Level Sublethal Effects of Approved Bee Hive Chemicals on Honey Bees (Apis mellifera L). PLoS ONE8, e76536 (2013).
11. Pettis, J. S., Collins, A. M., Wilbanks, R. & Feldlaufer, M. F. Effects of coumaphos on queen rearing in the honey bee, Apis mellifera. Apidologie35, 605–610 (2004).
12. Haarmann, T., Spivak, M., Weaver, D., Weaver, B. & Glenn, T. Effects of Fluvalinate and Coumaphos on Queen Honey Bees (Hymenoptera: Apidae) in Two Commercial Queen Rearing Operations. J. Econ. Entomol.95, 28–35 (2002).
13. Burley, L. M., Fell, R. D. & Saacke, R. G. Survival of Honey Bee (Hymenoptera: Apidae) Spermatozoa Incubated at Room Temperature from Drones Exposed to Miticides. J. Econ. Entomol.101, 1081–1087 (2008).
14. Bevk, D., Kralj, J. & Čokl, A. Coumaphos affects food transfer between workers of honeybee Apis mellifera. Apidologie (2011). doi:10.1007/s13592-011-0113-x
15. Garrido, P. M. et al. Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides. J. Insect Physiol.59, 113–119 (2013).
16. González-Cabrera, J., Davies, T. G. E., Field, L. M., Kennedy, P. J. & Williamson, M. S. An Amino Acid Substitution (L925V) Associated with Resistance to Pyrethroids in Varroa destructor. PLoS ONE8, e82941 (2013).
17. Milani, N. & Vedova, G. D. Decline in the proportion of mites resistant to fluvalinate in a population of Varroa destructor not treated with pyrethroids. Apidologie33, 417–422 (2002).
18. Johnson, R. M., Wen, Z., Schuler, M. A. & Berenbaum, M. R. Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases. J. Econ. Entomol.99, 1046–1050 (2006).
19. Rinderer, T. E., Guzman, L. I. de, Lancaster, V. A., Delatte, G. T. & Stelzer, J. A. Varroa in the mating yard: I. The effects of Varroa jacobsoni and Apistan® on drone honey bees. Am. Bee J.139, 134–139 (1999).
20. Taylor, K. S., Waller, G. D. & Crowder, L. A. Impairment of a Classical Conditioned Response of the Honey Bee (Apis mellifera L.) by Sublethal Doses of Synthetic Pyrethroid Insecticides. Apidologie18, 243–252 (1987).
21. Teeters, B. S., Johnson, R. M., Ellis, M. D. & Siegfried, B. D. Using video‐tracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.). Environ. Toxicol. Chem. (2012). doi:10.1002/etc.1830
22. Frost, E. H., Shutler, D. & Hillier, N. K. Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival. J. Exp. Biol. (2013). doi:10.1242/jeb.086538
23. Locke, B., Forsgren, E., Fries, I. & de Miranda, J. R. Acaricide Treatment Affects Viral Dynamics in Varroa destructor-Infested Honey Bee Colonies via both Host Physiology and Mite Control. Appl. Environ. Microbiol.78, 227–235 (2012).
24. Mao, W., Schuler, M. A. & Berenbaum, M. R. CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera). Proc. Natl. Acad. Sci.108, 12657–12662 (2011).
25. Zhu, W., Schmehl, D. R., Mullin, C. A. & Frazier, J. L. Four Common Pesticides, Their Mixtures and a Formulation Solvent in the Hive Environment Have High Oral Toxicity to Honey Bee Larvae. PLoS ONE9, e77547 (2014).
26. Schulz, D. J. & Robinson, G. E. Octopamine influences division of labor in honey bee colonies. J. Comp. Physiol. A187, 53–61 (2001).
27. Barron, A. B., Maleszka, R., Meer, R. K. V. & Robinson, G. E. Octopamine modulates honey bee dance behavior. Proc. Natl. Acad. Sci.104, 1703–1707 (2007).
28. Hillier, N. K., Frost, E. H. & Shutler, D. Fate of Dermally Applied Miticides Fluvalinate and Amitraz Within Honey Bee (Hymenoptera: Apidae) Bodies. J. Econ. Entomol.106, 558–565 (2013).
29. Gregorc, A. & Bowen, I. D. Histochemical characterization of cell death in honeybee larvae midgut after treatment with Paenibacillus larvae, Amitraz and Oxytetracycline. Cell Biol. Int.24, 319–324 (2000).
30. Papaefthimiou, C., Papachristoforou, A. & Theophilidis, G. Biphasic responses of the honeybee heart to nanomolar concentrations of amitraz. Pestic. Biochem. Physiol.107, 132–137 (2013).
31. Strachecka, A., Paleolog, J., Olszewski, K. & Borsuk, G. Influence of Amitraz and Oxalic Acid on the Cuticle Proteolytic System of Apis mellifera L. Workers. Insects3, 821–832 (2012).
32. Sammataro, D., Untalan, P., Guerrero, F. & Finley, J. The resistance of varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. Int. J. Acarol.31, 67–74 (2005).
33. Dujin, T., Jovanovic´, V., Šuvakov, D. & Milkovic´, Z. Effect of using amitraz preparations for several years on the development of resistant strains of Varroa jacobsoni. Vet. Glas.45, 851–855 (1991).
34. Elzen, P. J., Baxter, J. R., Spivak, M. & Wilson, W. T. Amitraz resistance in varroa: new discovery in North America. Am. Bee J.139, 362 (1999).
35. Rodríguez-Dehaibes, S. R., Otero-Colina, G., Pardio Sedas, V. & Villanueva Jiménez, J. A. Resistance to amitraz and flumethrin in Varroa destructor populations from Veracruz, Mexico. J. Apic. Res.44, 124–125 (2005).
36. Maggi, M., Ruffinengo, S., Negri, P. & Eguaras, M. Resistance phenomena to amitraz from populations of the ectoparasitic mite Varroa destructor of Argentina. Parasitol. Res.107, 1189–1192 (2010).
37. Osano, O., Oladimeji, A. A., Kraak, M. H. S. & Admiraal, W. Teratogenic Effects of Amitraz, 2,4-Dimethylaniline, and Paraquat on Developing Frog (Xenopus) Embryos. Arch. Environ. Contam. Toxicol.43, 42–49 (2002).
38. Korta, E. et al. Study of Acaricide Stability in Honey. Characterization of Amitraz Degradation Products in Honey and Beeswax. J. Agric. Food Chem.49, 5835–5842 (2001).
39. Jiménez, J. J., Bernal, J. L., del Nozal, M. J. & Martín, M. T. Residues of organic contaminants in beeswax. Eur. J. Lipid Sci. Technol.107, 896–902 (2005).
40. Enan, E. Insecticidal activity of essential oils: octopaminergic sites of action. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.130, 325–337 (2001).
41. Priestley, C. M., Williamson, E. M., Wafford, K. A. & Sattelle, D. B. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharmacol.140, 1363–1372 (2003).
42. Blenau, W., Rademacher, E. & Baumann, A. Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets? Apidologie43, 334–347 (2012).
43. Ellis, M. D. & Baxendale, F. P. Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants. J. Econ. Entomol.90, 1087–1091 (1997).
44. Floris, I., Satta, A., Cabras, P., Garau, V. L. & Angioni, A. Comparison Between Two Thymol Formulations in the Control of Varroa destructor: Effectiveness, Persistence, and Residues. J. Econ. Entomol.97, 187–191 (2004).
45. Marchetti, S., Barbattini, R. & D’Agaru, M. Comparative effectiveness of treatments used to control Varroa jacobsoni oud. Apidologie15, 363–378 (1984).
46. Whittington, R., Winston, M. L., Melathopoulos, A. P. & Higo, H. A. Evaluation of the botanical oils neem, thymol, and canola sprayed to control Varroa jacobsoni Oud. (Acari: Varroidae) and Acarapis woodi (Acari: Tarsonemidae) in colonies of honey bees (Apis mellifera L., Hymenoptera: Apidae). Am. Bee J.140, 567–572 (2000).
47. Dahlgren, L., Johnson, R. M., Siegfried, R. D. & Ellis, M. D. Comparative Toxicity of Acaricides to Honey Bee (Hymenoptera: Apidae) Workers and Queens. J. Econ. Entomol.105, 1895–1902 (2012).
48. Boncristiani, H. et al. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J. Insect Physiol.58, 613–620 (2012).
49. Bergougnoux, M., Treilhou, M. & Armengaud, C. Exposure to thymol decreased phototactic behaviour in the honeybee (Apis mellifera) in laboratory conditions. Apidologie44, 82–89 (2013).
50. Bonafos, R., Guillet, B., Colin, M. E. & Kreiter, S. Monitoring of the susceptibility/resistance of Varroa destructor to acaricides. in 150–159 (Association Française de Protection des Plantes (AFPP), 2011).
51. Bogdanov, S., Imdorf, A. & Kilchenmann, V. Residues in wax and honey after Apilife VAR® treatment. Apidologie29, 12 (1998).
52. Cao, L.-C. et al. Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int.66, 1890–1900 (2004).
53. Meimaridou, E. et al. Crystal and microparticle effects on MDCK cell superoxide production: oxalate-specific mitochondrial membrane potential changes. Free Radic. Biol. Med.38, 1553–1564 (2005).
54. Rademacher, E. & Harz, M. Oxalic acid for the control of varroosis in honey bee colonies – a review. Apidologie37, 98–120 (2006).
55. Toomemaa, K., Martin, A.-J. & Williams, I. H. The effect of different concentrations of oxalic acid in aqueous and sucrose solution on Varroa mites and honey bees. Apidologie41, 643–653 (2010).
56. Schneider, S., Eisenhardt, D. & Rademacher, E. Sublethal effects of oxalic acid on Apis mellifera (Hymenoptera: Apidae): changes in behaviour and longevity. Apidologie43, 218–225 (2012).
57. Nozal, M. J., Bernal, J. L., Gómez, L. A., Higes, M. & Meana, A. Determination of oxalic acid and other organic acids in honey and in some anatomic structures of bees. Apidologie34, 181–188 (2003).
58. Bogdanov, S., Charrière, J.-D., Imdorf, A., Kilchenmann, V. & Fluri, P. Determination of residues in honey after treatments with formic and oxalic acid under field conditions. Apidologie33, 399–409 (2002).
59. Keyhani, J. & Keyhani, E. Epr study of the effect of formate on cytochrome c oxidase. Biochem. Biophys. Res. Commun.92, 327–333 (1980).
60. Song, C. & Scharf, M. E. Formic acid: A neurologically active, hydrolyzed metabolite of insecticidal formate esters. Pestic. Biochem. Physiol.92, 77–82 (2008).
61. Underwood, R. & Currie, R. The effects of temperature and dose of formic acid on treatment efficacy against Varroa destructor (Acari: Varroidae), a parasite of Apis mellifera (Hymenoptera: Apidae). Exp. Appl. Acarol.29, 303–313 (2003).
62. Gregorc, A., Pogacnik, A. & Bowen, I. D. Cell death in honeybee ( Apis mellifera) larvae treated with oxalic or formic acid. Apidologie35, 453–460 (2004).
63. Guzman, L. I. de, Rinderer, T. E., Lancaster, V. A., Delatte, G. T. & Stelzer, A. Varroa in the mating yard: III. The effects of formic acid gel formulation on drone production. Am. Bee J.139, 304–307 (1999).
64. Underwood, R. M. & Currie, R. W. Indoor winter fumigation with formic acid does not have a long-term impact on honey bee (Hymenoptera: Apidae) queen performance. J. Apic. Res.47, 108–112 (2008).
65. Giovenazzo, P. & Dubreuil, P. Evaluation of spring organic treatments against Varroa destructor (Acari: Varroidae) in honey bee Apis mellifera (Hymenoptera: Apidae) colonies in eastern Canada. Exp. Appl. Acarol.55, 65–76 (2011).
66. Strachecka, A. J., Paleolog, J., Borsuk, G. & Olszewski, K. The influence of formic acid on the body surface proteolytic system at different developmental stages in Apis mellifera L. workers. J. Apic. Res.51, 252–262 (2012).
Potrebbero interessarti
Lotta alla Varroa: il blocco della deposizione
Blocco della deposizione Razionale Arrestando la deposizione della regina per il tempo necessario allo sfarfallamento di tutta la covata si…
Monitoraggio nazionale varroa
11/07/2020 Si è concluso il primo rilevamento 2020 dei valori di varroa foretica, promosso dal CRT Patologie apistiche dell’Unaapi. Nella…
Come prevedere la fioritura di acacia e castagno secondo i modelli Iphen
21/04/20 Inverno con temperature sopra la media, siccità e cali termici notturni, con questi presupposti risulta difficile stimare la fioritura…
Lotta alla Varroa: acido formico
Acido formico Utilizzo L’acido formico è l’unico principio attivo in grado di agire anche sotto opercolo determinando mortalità, e secondo alcuni…
Lotta alla Varroa: acido citrico
Acido citrico e succo di limone Vari acidi organici sono stati presi in considerazione nella lotta contro Varroa destructor ed…
Lotta integrata alla Varroa
Lotta integrata Con l’arrivo della varroa le famiglie di api sono diventate dipendenti dai trattamenti dell’apicoltore per la sopravvivenza. Il…